▎ 摘 要
Gadolinium oxide - Graphene (Gd2O3-G) nanocomposites were prepared with different weight ratio of graphene using low temperature solution process. The structural, morphological, electrochemical and photocatalytic properties of the composites were investigated by X-ray diffraction, Raman, FE-SEM, HRTEM, Cyclic voltammetric and photo-degradation analysis. The chemical composition of the composites was studied by elemental mapping analysis using EPMA. The binding states of various elements present in the composites were analyzed by XPS. Cyclic voltammetric studies revealed that the nanocomposite with 5% graphene exhibits the specific capacitance of 26 F g(-1), which is higher than that of pure Gd2O3 (18 F g(-1)). The presence of graphene has greatly enhanced the photocatalytic performance of Gd(2)O(3)G composites as the rate of degradation of MB dye is relatively higher in the composites compared to pure Gd2O3. The significant increase in the specific capacitance and rate of degradation of dye suggest that the Gd(2)O(3)G is a promising material for energy storage and environmental applications.