• 文献标题:   Investigation of the high-field transport, Joule-heating-driven conductivity improvement and low-field resistivity behaviour in lightly-reduced free-standing graphene oxide papers
  • 文献类型:   Article
  • 作  者:   THAMKRONGART K, RAMAMOORTHY H, BUAPAN K, CHIAWCHAN T, SOMPHONSANE R
  • 作者关键词:   freestanding rgo, highbias currentvoltage behaviour, space charge limited conduction, fowlernordheim tunneling, joule heating, charge trapping, variable range hopping power law transport
  • 出版物名称:   JOURNAL OF PHYSICS DAPPLIED PHYSICS
  • ISSN:   0022-3727 EI 1361-6463
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1088/1361-6463/ac5e19
  • 出版年:   2022

▎ 摘  要

Free-standing reduced graphene oxide (rGO) has been gaining popularity for its use in supercapacitors and battery applications due its facile synthesis, multi-layered structure, and high-current carrying capacity. Pertinent to the successful implementation of such applications, however, is the need to develop a thorough understanding of the electrical properties of such materials when subject to high applied electric fields. In this work, we undertake a detailed study of high-field electrical properties of mm-scale, lightly-reduced, rGO papers. Our results reveal that the I-V curves exhibit substantial nonlinearity with associated hysteresis that depends strongly on the applied electric field. The nonlinear behaviour which was interpreted using conventional transport models of Fowler-Nordheim tunnelling and space charge limited conduction revealed that while these models provided good qualitative fits to our data, they were quantitatively lacking, thus leaving the issue of high-field transport mechanisms in rGO open for debate. Careful I-V cycling experiments with measurement time-delay introduced between cycles revealed that the observed hysteresis contained recoverable and non-recoverable parts that we identified as arising from charge trapping and Joule heating effects, respectively. Time-dependent measurements showed that these effects were characterized by two distinct time scales. Importantly, the Joule heating was found to cause a permanent conductivity improvement in the rGO via the 'current annealing' effect by effectively eliminating oxygenated groups from the rGO. The analysis of the electrical breakdown in our samples resembled a thermal runaway-like event that resulted in premature damage to the rGO. Finally, we investigated the low-field resistivity in the 80 K-300 K temperature range. The reduced activation energy analysis revealed a robust power law behaviour below 230 K, while deviating from this trend at higher temperatures. For samples that received current annealing treatment, a reduced value for the power law exponent was obtained, confirming the effective lowering of disordered regions.