▎ 摘 要
Graphene/carbon nanotube (CNT) junction barrier height was investigated using all-carbon field-effect transistor structure with graphene and single-walled CNT (SWCNT) network as source (S)/drain (D)/gate electrodes and as channel, respectively. SWCNT network channel was formed by dielectricphoresis process at the prepatterned graphene S/D electrodes. By analyzing the measured current-voltage characteristics by the diode circuit model, the Schottky barrier height at the graphene and CNT junction was found to be approximately 0.5 eV.