▎ 摘 要
We study quasiparticle dynamics in graphene exposed to a linearly polarized electromagnetic wave of very large intensity. We demonstrate that low-energy transport in such system can be described by an effective time-independent Hamiltonian, characterized by multiple Dirac points in the first Brillouin zone. Around each Dirac point the spectrum is anisotropic: the velocity along the polarization of the radiation significantly exceeds the velocity in the perpendicular direction. Moreover, in some of the points the transverse velocity oscillates as a function of the radiation intensity. We find that the conductance of a graphene p-n junction in the regime of strong irradiation depends on the polarization as G(theta) proportional to vertical bar sin theta vertical bar(3/2), where theta is the angle between the polarization and the p-n interface, and oscillates as a function of the radiation intensity.