• 文献标题:   Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries
  • 文献类型:   Article
  • 作  者:   SUN Q, WANG ZJ, ZHANG ZJ, YU Q, QU Y, ZHANG JY, YU Y, XIANG B
  • 作者关键词:   lithiumion battery, mno, graphene nanosheet, anode, nanowire morphology
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Univ Sci Technol China
  • 被引频次:   63
  • DOI:   10.1021/acsami.6b00122
  • 出版年:   2016

▎ 摘  要

Recently, transition metal oxides (TMOs) mixed with carbon materials have attracted attention as lithium-ion battery (LIB) anode materials. However, the aggregation issue in TMOs hinders the development of an ideal encapsulation structure with carbon materials. In this paper, we report graphene reinforced MnO nanowires with enhanced electrochemical performance as an anode in LIB. The graphene nanosheets (GNs)/MnO feature was confirmed by transmission electron microscopy, X-ray diffraction, Raman scattering, and X-ray photoelectron spectroscopy. The GNs/MnO nanowires delivered a highly stable discharge capacity of similar to 815 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles, which is 1.5 times higher than that of pure MnO nanowires. This GNs/MnO structure with a specific capacity of similar to 995 mAh g(-1) at a current density of 50 mA g(-1) also exhibited excellent Li storage properties. The superior cycling and high rate capability were attributed to the intimate incorporation between the MnO and GNs. The structure of the GNs/MnO nanowires effectively accommodated the volume change of the MnO nanowires and prevented structure collapse during cycling.