▎ 摘 要
A magnetically modified graphene oxide/chitosan/ferrite (GCF) nanocomposite material was synthesized and exploited for removal of Chromium(V1) from aqueous solution. The GCF nanocomposite material was characterized by powder-X-ray diffraction (powder-XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope- energy dispersive X-ray (SEM-EDX) analysis, transmission electron microscopy (TEM) thermogravimetric analysis (TGA), UV-vis diffusive reflectance spectra and Brunauer-Emmett-Teller (BET) analysis. The effect of pH, adsorbent dose, contact time and initial Cr(VI) metal ion concentration were studied in batch process. The GCF nanocomposite material showed an adsorption capacity of 270.27 mg g(-1) for Cr(VI) at pH 2.0. The adsorption mechanism of GCF adsorbent material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient (<0.99). The results have shown that GCF nanocomposite material can be used as a suitable adsorbent for removal of Cr(VI) from wastewater. (C) 2018 Elsevier B.V. All rights reserved.