• 文献标题:   Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding pi-bond model
  • 文献类型:   Article
  • 作  者:   CHIN SK, LAM KT, SEAH D, LIANG GC
  • 作者关键词:   graphene nanoribbon, dirac equation, quantum transport, nonequilibrium green s function
  • 出版物名称:   NANOSCALE RESEARCH LETTERS
  • ISSN:   1556-276X
  • 通讯作者地址:   ASTAR
  • 被引频次:   8
  • DOI:   10.1186/1556-276X-7-114
  • 出版年:   2012

▎ 摘  要

We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding pi-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding pi-bond model for graphene. We demonstrate how the exact self-energies due to the leads can be calculated in the NEGF-Dirac model. We apply our approach to GNR systems of different widths subjecting to different potential profiles to characterize their device physics. Specifically, the validity and accuracy of our approach will be demonstrated by benchmarking the density of states and transmissions characteristics with that of the more expensive transport calculations for the tight-binding pi-bond model.