▎ 摘 要
Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for potential bioimaging applications. The nanocrystals had an average diameter of similar to 4 nm, a hydrodynamic size of similar to 8 nm, and a high quantum efficiency of 28%. Toxicity assay of the hybrid CQD in the cultured human mononuclear blood cells does not show cytotoxicity up to 200 mu g/ml. At high concentrations, damage to mitochondrial activity and mitochondrial membrane potential (MMP) due to the formation of uncontrollable amounts of intracellular oxygen radicals (ROS) was observed. Cell membrane and Lysosome damage or a transition in mitochondrial permeability were also noticed. Understanding of cell-nanoparticle interaction at the molecular level is useful for the development of new fluorophores for biomedical imaging.