• 文献标题:   Defect guided conduction in graphene-derivatives and MoS2: Two-dimensional nanomaterial models
  • 文献类型:   Article
  • 作  者:   DEBBARMA R, NGUYEN NHL, BERRY V
  • 作者关键词:   defect, conduction mechanism, 2d material, localization, hopping
  • 出版物名称:   APPLIED MATERIALS TODAY
  • ISSN:   2352-9407
  • 通讯作者地址:  
  • 被引频次:   10
  • DOI:   10.1016/j.apmt.2021.101072 EA MAY 2021
  • 出版年:   2021

▎ 摘  要

The realization of unique scientific phenomena in two-dimensional nanomaterials (2DNMs) has led to their applications in several electronic fields; making it imperative to understand the conduction mechanism of charge carriers in such systems. Though several studies have been conducted on 2DNMs with pristine crystallinity, the inevitable presence of defects in the crystals requires careful consideration of their effect on 2DNMs' electrical behavior. Here, we outline the effects of chemical, structural, substrate-induced defects and disorder on the conduction mechanism within 2DNMs, particularly graphene derivatives and MoS2. The conduction mechanisms discussed in this work are thermally activated conduction, nearest neighbor hopping, Efros-Shklovskii variable range hopping, and Mott variable range hopping. This review will be beneficial to the various material scientists studying the electronic properties of two-dimensional nanomaterials. (C) 2021 Elsevier Ltd. All rights reserved.