▎ 摘 要
Density functional theory (DFT) studies have been performed on the unprecedented adsorption of glyphosate pesticide on modified pyridine-like nitrogen-doped graphene (PNG) for the purpose of water remediation. The interaction of glyphosate on the PNG sheet, as well as on Pt-Cu decorated PNG substrates, is investigated. The Pt4-nCun (n = 0-4) clusters, such as Pt-4, Pt3Cu1, Pt2Cu2, Pt1Cu3, and Cu-4, have been decorated on the PNG surface to increase the reactivity of the adsorbent toward glyphosate. The adsorption of glyphosate on the PNG surface is physisorption, indicated by the low adsorption energy and negligible charge transfer. The mixed metal (Pt-Cu) clusters play a significant role in enhancing the interactions between the adsorbate and adsorbent, leading to better results for the adsorption of glyphosate. Exothermic chemisorption is shown by all Pt4-nCun clusters decorated PNG substrates, and chemical bond formation takes place between the adsorbate and adsorbent. Various electronic properties, like electron density difference plots, give information about the adsorption behavior of glyphosate, and density of states (DOS) plots reveal that on decorating with the cluster, the substrates start exhibiting magnetic character.