▎ 摘 要
We developed a simple and facile method of producing a stable aqueous suspension of reduced graphene oxide (RGO) nanosheets through the chemical reduction of graphene oxide in the presence of a conducting polymer dispersant, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). This approach involves the cooperative interactions of strong pi-pi interactions between a two-dimensional graphene sheet and a rigid backbone of PEDOT and the intermolecular electrostatic repulsions between negatively charged PSS bound on the RGO sheets, which impart the colloidal stability of the resulting hybrid nanocomposite of RGO/PEDOT. Moreover, our one-step solution-based method allows preserving the intrinsic chemical and electronic properties of both components, yielding a hybrid film of RGO nanosheets of high conductivity of 2.3 k Omega/sq with a transmittance of 80%. By taking advantage of conducting network structure of conducting polymers which provides an additional flexibility and mechanical stability of RGO nanosheets, we demonstrate the potential application of hybrid RGO/PEDOT as highly flexible and transparent electrodes.