▎ 摘 要
The electronic and magnetic properties of h-BN nanoribbions embedded with graphene nanoflakes (CBNNRs) are systematically studied by ab initio calculations. The CBNNRs with zigzag or armchair edges are all bipolar magnetic semiconductors (BMSs). The band gaps of zigzag CBNNRs (zCBNNRs) change linearly with the transverse electric field (E-field) for the first-order Stark effect, whereas for the armchair CBNNRs (aCBNNRs), the band gaps vary quadratically with the E-field for the second-order Stark effect. For zCBNNRs and aCBNNRs, they could transform from BMS to spin gapless semiconductor (SGS), metal, and half-metal (HM) under different transverse E-fields. The CBNNRs may transform into a semiconductor or HM, under the same E-fields, depending on the position of graphene flakes. The CBNNRs introduce local magnetic moment at carbon atoms, and the magnetic moment is determined by the size of the graphene flakes. These observations open the door to applications of CBNNRs in spintronic devices.