▎ 摘 要
Quantum squeezing can improve the ultimate measurement precision by squeezing one desired fluctuation of the two physical quantities in Heisenberg relation. We propose a scheme to obtain squeezed states through graphene nanoelectromechanical system (NEMS) taking advantage of their thin thickness in principle. Two key criteria of achieving squeezing states, zero-point displacement uncertainty and squeezing factor of strained multilayer graphene NEMS, are studied. Our research promotes the measured precision limit of graphene-based nano-transducers by reducing quantum noises through squeezed states.