▎ 摘 要
Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan (CS) via a self-assembly process by one-pot hydrothermal method. The morphology and structure of the as-prepared materials were characterized by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, XPS spectroscopy, Raman spectroscopy, nitrogen adsorption/desorption measurement and Fourier transform infrared spectroscopy. The electrochemical performance of NGAs was studied by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. The microstructure, surface area and capacitance of NGAs could be facilely controlled by adding different amounts of chitosan. The prepared NGA-4 showed a specific capacitance of 148.0 F/g at the discharge current density of 0.5 A/g and also retained 95.3% of the initial capacitance after 5000 cycles at the scan rate of 10 mV/s. It provided a possible way to obtain graphene based materials with high surface area and capacitance.