▎ 摘 要
Sensitive and flexible sensors capable of monitoring physiological signals of human body for healthcare have been developed in recent years. It is still a challenge to fabricate a wearable sensor-integrated multifunctional performances and a good fit to human body. Here, an rGO and pen ink/PVA-layered strain-humidity sensor based on MS fabric is prepared through a cost-effective and scalable solution process. The conductive fabric as a strain sensor has a workable strain range (similar to 300%), ultrahigh sensitivity (maximum gauge factor of 492.8), great comfort, and long-term stability. Notably, a step increase in relative resistance variation will be achieved by controlling the coverage of an ink layer. Moreover, the reliable linear humidity-dependent resistance void of hysteresis and excellent repeatability renders conductive fabrics an opportunity as humidity sensors. Based on these superior multifunctions, the resultant conductive fabric can be applied to detect both human motions and skin humidity, showing potential in applications of wearable electronics for professional athletes.