▎ 摘 要
Graphene physics and plasmonics are two fields which, once combined, promise a variety of exciting applications. One of those applications is the integration of active nano-optoelectronic devices in electronic systems, using the fact that plasmons in graphene are tunable, highly confined and weakly damped. A crucial challenge remains before achieving these active devices: finding a platform enabling a high propagation of Graphene Plasmons Polaritons (GPPs). Suspended graphene presenting ultrahigh electron mobility has given rise to increasing interest. We numerically studied the plasmonic properties of suspended graphene. We propose a hybrid configuration and a set of conditions to launch graphene plasmons via an in-plane gold nanoantenna, for micrometric propagation of surface plasmons in suspended graphene. Finally, we propose a realistic optoelectronic device based on the use of suspended graphene. (C) 2017 Optical Society of America