• 文献标题:   Ni/Co Bimetallic Metal-Organic Frameworks on Nitrogen-Doped Graphene Oxide Nanoribbons for Electrochemical Sensing of Doxorubicin
  • 文献类型:   Article
  • 作  者:   JALAL NR, MADRAKIAN T, AFKHAMI A, AHMADI M
  • 作者关键词:   bimetallic metal minu, organic framework, nitrogendoped graphene oxide nanoribbon, unzipping mwcnt, electrochemical sensor, doxorubicin
  • 出版物名称:   ACS APPLIED NANO MATERIALS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1021/acsanm.2c02237 EA AUG 2022
  • 出版年:   2022

▎ 摘  要

Metal-organic frameworks (MOFs) have previously been researched for electrochemical sensor development. MOFs are commonly stated to have low conductivity, and improving their conductivity remains a significant challenge. We described the preparation of an electrochemical sensor depending on the in situ growth of NiCo-BTC bimetallic MOFs, as model bimetallic MOFs, on a glassy carbon electrode modified with conductive nitrogen-doped graphene oxide nanoribbons (NiCoBTC MOFs/N-GONRs/GCE). The proposed NiCo-BTC MOFs/ N-GONRs/GCE was characterized using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Raman spectroscopy. The square wave voltammetry response of NiCo-BTC MOFs/N-GONRs/GCE to doxorubicin (DOX) is significantly greater than that of NiCoBTC MOFs/GCE due to the synergic effect between N-GONRs and NiCo-BTC MOFs. The NiCo-BTC MOFs on the modified electrode act as active materials for sensing DOX. The calibration curve for DOX at the NiCo-BTC MOFs/N-GONRs/GCE showed two linear dynamic ranges, 0.01-1.0 and 1.0-80 mu mol L-1, with a detection limit of 0.006 mu mol L-1 (or 6 nmol L-1), which is less than the DOX concentration in human plasma samples (i.e., 77.2 +/- 10.5 nmol L-1). Here, a modified electrode was designed using the large surface area of bimetallic MOFs and conductivity of N-GONRs for the electrochemical sensing of DOX. The current procedure offers a viable solution to the poor conductivity of bimetallic MOFs. Finally, the observed result shows that the proposed NiCo-BTC MOFs/GCE is promising for determining DOX in real samples of human urine and serum.