• 文献标题:   A guanidyl-functionalized TiO2 nanoparticle-anchored graphene nanohybrid for enhanced capture of phosphopeptides
  • 文献类型:   Article
  • 作  者:   LIU HL, LIAN B
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Nanjing Normal Univ
  • 被引频次:   3
  • DOI:   10.1039/c8ra05006f
  • 出版年:   2018

▎ 摘  要

TiO2-based MOAC (metal oxide affinity chromatography) nanomaterials are regarded as one of the most promising materials for phosphopeptide enrichment. However, the serious non-specific adsorption of acidic peptides and the limited chemisorption performance to phosphopeptides will greatly reduce the enrichment efficiency. To overcome the above problems, a novel TiO2 hybrid material with guanidyl-functionalized TiO2 nanoparticles (GF-TiO2) anchored on the surface of a graphene oxide (GO) platform (denoted as GF-TiO2-GO) is successfully synthesized and applied as a biofunctional adsorbent for selective enrichment of trace phosphopeptides. Due to the improved selectivity to phosphopeptides and larger loading capacity, the novel GF-TiO2-GO nanohybrids exhibited higher selectivity toward phosphopeptides and a lower detection limit even when the concentration of -casein was decreased to only 1 x 10(-11) M. The selective enrichment test toward phosphopeptides from the tryptic digests of nonfat milk and human serum further validated that the GF-TiO2-GO nanohybrids were capable of selectively capturing global phosphopeptides from complicated biological samples.