▎ 摘 要
Zigzag graphene nanoribbons (ZGNRs) are expected to serve as the promising component in the all-carbon spintronic device. It remains challenging to fabricate a device based on ZGNRs with high spin-filter efficiency and low experimental complexity. Using density functional theory combined with nonequilibrium Green's function technique, we studied the spin-dependent transport properties of the tailored zigzag graphene nanoribbon. A perfect spin-filtering effect is found in the tailored structure of ZGNR. The nearly 100% spin-polarized current and high magneto-resistance ratio can be obtained by applying a homogeneous magnetic field across the device. The distribution of spin up and spin down states at the bridge carbon atom plays a dominant role in the perfect spin filtering. The tailoring of ZGNR provides a new effective approach to graphene-based spintronics.