• 文献标题:   Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate)
  • 文献类型:   Article
  • 作  者:   HONG NN, SONG L, WANG BB, STEC AA, HULL TR, ZHAN J, HU Y
  • 作者关键词:   nanostructure, chemical synthesi, electron microscopy, catalytic propertie
  • 出版物名称:   MATERIALS RESEARCH BULLETIN
  • ISSN:   0025-5408 EI 1873-4227
  • 通讯作者地址:   Univ Sci Technol China
  • 被引频次:   46
  • DOI:   10.1016/j.materresbull.2013.09.051
  • 出版年:   2014

▎ 摘  要

A reduced graphene oxide/NiAl-layered double hydroxide (RGO-LDH) was synthesized through a simple co-precipitation route. NiAl-layered double hydroxide (NiAl-LDH) nanoparticles were homogeneously dispersed on the reduced graphene oxide (RGO) nanosheets, which were simultaneously reduced during the process. RGO-LDH exhibited three steps of weight loss, leaving high residue. RGO-LDH was then solution blended into poly(methyl methacrylate) (PMMA) to investigate its effect on reducing flammability of the composite. With the incorporation of RGO-LDH, the thermal stability of PMMA composite was improved. Moreover, RGO-LDH endowed PMMA with the largest reduction in the heat release rate, smoke production and CO production rate relative to RGO or NiAl-LDH alone. RGO-LDH could decrease the production of volatiles including hydrocarbons, carbonyl compounds and epoxy compounds from the PMMA composite. The improved flame retardancy was ascribed to the combined effect of the physical barrier of RGO and the catalytic carbonization of NiAl-LDH. (C) 2013 Elsevier Ltd. All rights reserved.