▎ 摘 要
Three-dimensional (3D) graphene framework with integration of multiple functions is attractive to the broad sustainable applications, such as flame-retardant, heat-insulating, and catalysis. Herein, an efficient multifunctional graphene-based framework coupled with the in-situ formed boron nitride quantum dots is developed for the first time. By combination of boron nitride quantum dots to the graphene basal plane, this rational-formed hybrid framework exhibits a highly efficient flame-retardant and heat insulation ability in a wide temperature range from 50 degrees C to 500 degrees C. A high insulation efficiency could reach up to 66%. More importantly, it also displays an efficient electrocatalytic capability for oxygen reduction reaction (ORR), including a positive onset potential of 0.96 V (vs. RHE), small Tafel slope of 69.4 mV dec(-1), and half-wave potential of 0.8 V (vs. RHE), superior to those boron nitride/graphene BN composites and even comparable to the nitrogen, boron co-doped graphene-based electrocatalysts reported previously. This work provides an advanced example towards designing multifunctional graphene-based materials for different applications. (C) 2022 Elsevier Ltd. All rights reserved.