• 文献标题:   Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications
  • 文献类型:   Article
  • 作  者:   PARK J, JEON N, LEE S, CHOE G, LEE E, LEE JY
  • 作者关键词:   conductive hydrogel, reduced graphene oxide, agarose, bioelectrode, scaffold
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1016/j.cej.2022.137344 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

Conductive hydrogels afford efficient electrical communication with biological systems while providing soft and hydrated interfaces. However, facile fabrication of the conductive hydrogels of high electrical properties with minimal incorporation of conductive components is still challenge. We developed a conductive hydrogel composed of three-dimensionally connected reduced graphene oxide (rGO) networks using graphene oxide (GO)coated agarose microbeads and thermal annealing. Self-assembly of GO-coated agarose microbeads to granulate hydrogels and subsequent mild heating allowed the production of conductive hydrogels (named thermally annealed graphene-channeled agarose hydrogel (TAGAH)) containing a three-dimensionally connected rGO network. TAGAH exhibited high electrical conductivity with a small amount of graphene, low impedance, and soft tissue-like elasticity. Various conductive constructs could be easily fabricated by molding and 3D printing. In vitro and in vivo studies revealed their excellent biocompatibility. Moreover, potential biomedical applications of TAGAH-based materials were successfully demonstrated as soft bioelectrodes, pressure sensors, strain sensors, and conductive tissue scaffolds.