• 文献标题:   Bioinspired in situ self-catalyzing strategy towards graphene nanosheets with hierarchical structure derived from biomass for advanced supercapacitors
  • 文献类型:   Article
  • 作  者:   LIU H, CHEN W, ZHANG RL, XU C, HUANG XL, PENG H, HUO CF, XU MD, MIAO ZC
  • 作者关键词:   highquality graphene, selfcatalyzation, supercapacitor, biomas
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:  
  • 被引频次:   16
  • DOI:   10.1016/j.apsusc.2021.150692 EA JUL 2021
  • 出版年:   2021

▎ 摘  要

Ultrahigh-quality graphene with structural hierarchy has been successfully fabricated through a novel and effective bioinspired in situ self-catalyzing strategy with camphor leaves as a renewable carbon source. The intrinsic Ca-containing species in biomass transfers into CaO via the intermediate of CaCO3 during the pyrolysis process, and the finally imbedded CaO functions as in situ hard template and catalyst to generate hierarchical structure and construct the graphitic structure. The utilization of KOH effectively facilitated the graphene formation and enhanced the porosity of the carbon materials. The resultant graphene possesses many advantages for supercapacitor application, including large surface area, hierarchical porosity (crosslinked micro/meso/macroporous vacancies), well-organized graphene layers and favorable dually co-doping of O/N, thereby contributing to rapid charge transportation on the electrode/electrolyte interface, fast diffusion of electrolyte ions and high conductivity. When directly used as supercapacitor electrode (without the mixture of any conductive agent), asproduced graphene exhibited a specific capacitance of 397F/g at a current density of 1.0 A/g with a high rate retention of 74% from 1 to 20 A/g in a three-electrode system with 6 M KOH aqueous electrolyte. The highquality graphene prepared from biomass via a readily scalable method opened up new vision towards high performance applications in energy storage and conversion.