▎ 摘 要
Biomedical applications of graphene in tumor and bacterial treatment have become cutting-edge fields due to its unique physical and chemical properties. However, a mechanistic understanding of the interactions and reactions between graphene-based material and biological systems such as lipid membranes remains elusive, especially at the molecular level. By using the uniquefield-induced droplet ionization mass spectrometry and cryogenicelectron microscopy methodologies, we reveal the oxidation products of monolayer lipid membranes at the air-water interface and the change in the morphology of bilayer lipid membranes in an aqueous solution caused by the incorporation of graphene oxide bearing pi-conjugated carbon radicals [hydrated graphene oxide (hGO)]. We discovered that hGO is an efficient source of hydroxyl radicals and that it is not only the incorporation of the hGO sheets but also the irregular packing of the lipid oxides from the hydroxyl radical oxidation that causes the structural distortions of the liposomes