▎ 摘 要
A tunable graphene-nanoribbon (GNR)-resonator was investigated via classical molecular dynamics simulations. Resonance frequencies increased with increasing externally applied gate-force and axial-strain, and could be tuned above several hundred GHz. Tunable resonance frequencies achieved from the gate force were higher than those achieved from the axial-strain. The operating frequencies of GNR-resonators without axial-strain or with small axial-strains were most widely tuned by the gate, and almost linearly increased with increasing mean deflection. As the axial strain increased, the tunable ranges of the GNR-resonators were exponentially decreased, although the operating frequencies increased. GNR-resonators without axial-strain could be applied to wide-range-tuners, whereas GNR-resonators with high axial-strain could be applied to high-frequency-fine-tuners. (C) 2012 Elsevier B.V. All rights reserved.