• 文献标题:   Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties
  • 文献类型:   Article
  • 作  者:   DUAN LL, WANG YM, ZHANG YT, LIU JD
  • 作者关键词:   graphene, lysozyme, ultrafiltration membrane, antibacterial activity
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   Zhengzhou Univ
  • 被引频次:   35
  • DOI:   10.1016/j.apsusc.2015.07.127
  • 出版年:   2015

▎ 摘  要

Enzyme immobilization has been developed to address lots of issues of free enzyme, such as instability, low activity and difficult to retain. In this study, graphene was used as an ideal carrier for lysozyme immobilization, including graphene oxide (GO) immobilized lysozyme (GO-Ly) and chemically reduced graphene oxide (CRGO) immobilized lysozyme (CRGO-Ly). Herein, lysozyme as a bio-antibacterial agent has excellent antibacterial performance and the products of its catalysis are safety and nontoxic. Then the immobilized lysozyme materials were blended into polyethersulfone (PES) casting solution to prepare PES ultrafiltration membrane via phase inversion method. GO and CRGO were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectrum (UV), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and the immobilized lysozyme composites were observed by fluorescent microscopy. The results revealed that GO and CRGO were successfully synthesized and lysozyme was immobilized on their surfaces. The morphology, hydrophilicity, mechanical properties, separation properties and antibacterial activity of the hybrid membranes were characterized in detail. The hydrophilicity, water flux and mechanical strength of the hybrid membranes were significantly enhanced after adding the immobilized lysozyme. In the antibacterial experiment, the hybrid membranes exhibited an effective antibacterial performance against Escherichia coli (E. coli). (c) 2015 Elsevier B.V. All rights reserved.