• 文献标题:   Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation
  • 文献类型:   Article
  • 作  者:   LIU CB, ZHANG H, TANG YH, LUO SL
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Hunan Univ
  • 被引频次:   52
  • DOI:   10.1039/c3ta14137c
  • 出版年:   2014

▎ 摘  要

Graphene is a promising support for nanosized electrocatalysts, however the conventional stacking arrangement of its graphene sheets substantially decreases the catalytic sites on the catalyst. We report here the fabrication of a graphene/Cu electrocatalyst by the simple cyclic voltammetric electrolysis of graphene oxide (GO) and copper ethylenediamine tetraacetate (Cu-EDTA), and find that the electrochemically reduced GO (RGO) and Cu nanoparticles can be sequentially self-assembled into layer-by-layer, 3D sandwich-type, and homogenous architectures as the concentration ratio of Cu-EDTA/GO increases. The 3D sandwich-type RGO/Cu composite (S-RGO/Cu) shows RGO sheets decorated with Cu nanoparticles which stand nearly perpendicular on the electrode, leading to a significant increase in the electrochemically accessible surface area (0.685 cm(2)) relative to those of the horizontal layer-by-layer RGO/Cu composite (0.147 cm(2)) and the homogenous RGO/Cu composite (0.265 cm(2)). Stemming from its high electrochemical surface area, the S-RGO/Cu composite exhibits a high electrocatalytic activity in hydrazine oxidation in terms of current density and overpotential. Mechanistic analysis of the electrode reactions reveals the reaction pathways of hydrazine on RGO/Cu are closely related to the electrochemical surface area of the RGO/Cu electrocatalyst. The correlation between the architectures and their performances in electrocatalysis presented here can guide the design of novel structures with enhanced properties.