▎ 摘 要
We theoretically investigate the Goos-Hanchen (GH) shifts of optical beam in a defective photonic crystal composed of dielectric multilayers and graphene. The system is non-Hermitian and possesses exceptional points (EPs) as the scattering matrix becomes defective at the zero points of reflection. The reflective wave at EPs experiences an abrupt phase change and there the eigenvalues of scattering matrix coalesce. The GH shifts are extremely large near EPs in parametric space composed of dielectric refractive index and incident angle. The positive and negative maxima of GH shifts could be as high as 103 times of the incident wavelength. The direction of GH shifts switches at EPs and the EPs position can be readily controlled by the chemical potential of graphene. Moreover, the GH shifts should remarkably change as the incident waves impinge on the structure from opposite directions. The study of GH shifts in the graphene incorporated multilayers may find great applications in highly sensitive sensors. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement