• 文献标题:   Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-Ion Batteries
  • 文献类型:   Article
  • 作  者:   HUSSAIN T, OLSSON E, ALHAMEEDI K, CAI Q, KARTON A
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447 EI 1932-7455
  • 通讯作者地址:   Univ Western Australia
  • 被引频次:   2
  • DOI:   10.1021/acs.jpcc.0c01216
  • 出版年:   2020

▎ 摘  要

Two-dimensional nanoporous graphene (NPG) with uniformly distributed nanopores has been synthesized recently and shown remarkable electronic, mechanical, thermal, and optical properties with potential applications in several fields. Here, we explore the potential application of NPG as an anode material for Li-, Na-, K-, Mg-, and Ca-ion batteries. We use density functional theory calculations to study structural properties, defect formation energies, metal binding energies, charge analysis, and electronic structures of NPG monolayers. Pristine NPG can bind effectively K+ cations but cannot sufficiently bind the other metal cations strongly, which is a prerequisite of an efficient anode material. However, upon substitution with oxygen-rich functional groups (e.g., O, OH, and COOH) and doping with heteroatoms (B, N, P, and S), the metal binding ability of NPG is significantly enhanced. Of the considered systems, the S-doped NPG (S-NPG) binds the metal cations most strongly with binding energies of -3.87 (Li), -3.28 (Na), -3.37 (K), -3.68 (Mg), and -4.97 (Ca) eV, followed by P-NPG, O-NPG, B-NPG, and N-NPG. Of the substituted NPG systems, O-substituted NPG exhibits the strongest metal binding with binding energies of -3.30 (Li), -2.62 (Na), -2.89 (K), -1.67 (Mg), and -3.40 eV (Ca). Bader charge analysis and Roby-Gould bond indices show that a significant amount of charge is transferred from the metal cations to the functionalized NPG monolayers. Electronic properties were studied by density of states plots, and all the systems were found to be metallic upon the introduction of metal cations. These results suggest that functionalized NPG could be used as a global anode material for Li-, Na-, K-, Mg-, and Ca-ion batteries.