• 文献标题:   Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane
  • 文献类型:   Article
  • 作  者:   SHI FT, FAN SC, LI C, LI ZA
  • 作者关键词:   graphene membrane, fabryperot resonator, optothermal actuation, resonance frequency simulation
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:   Beihang Univ
  • 被引频次:   0
  • DOI:   10.3390/nano9040563
  • 出版年:   2019

▎ 摘  要

An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 10(8) Pa to 10(9) Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators.