▎ 摘 要
We present an ab initio-DFT/GGA-study on the structural and electronic distortions of modified graphene by the creation of vacancies, the inclusion of boron atoms, and the coexistence of both, by means of total energy and band structure calculations. In the case of coexistence of boron atoms and vacancy, the modified grapheme presents spin polarization only when B atoms locate far from vacancy. Thus, when a boron atom fills single and divacancies, it suppresses the spin polarization of the charge density. In particular, when B atoms fill a divacancy, a new type of rearrangement occurs, where a stable BC4 unit is formed inducing important out-of-plane distortions to graphene. All these findings suggest that new chemical modifications to grapheme and new types of vacancies can be used to modify its electronic properties.