▎ 摘 要
Folding two-dimensional graphene around one-dimensional III-V nanowires yields a new class of hybrid nanomaterials combining their excellent complementary properties. However, important for high-quality electrical and optical performance, needed in many applications, are well-controlled oxide-free interfaces and a tight folding morphology. To improve the interface chemistry between the graphene and InAs, we annealed the samples in atomic hydrogen. Using surface-sensitive imaging, we found that the III-V native oxides in the interface can be reduced at temperatures that maintain the graphene and the III-V nanostructures. Transferring both single-and multilayer graphene flakes onto InAs NWs, we found that single layers fold tightly around the NWs, while the multilayers fold weakly with a decline of only a few degrees. Annealing in atomic hydrogen further tightens the folding. Together, this indicates that high-quality morphological and chemical control of this hybrid material system is possible, opening for future devices for quantum technologies and optoelectronics.