▎ 摘 要
Carbon nanomaterials have been widely used as an interlayer for realizing efficient and stable perovskite solar cells (PSCs). Theoretically, the design of a carbon composite interlayer that combines excellent conductivity with a high specific surface area is a better strategy than the application of pure nanocarbons. Here, an unusual seamlessly bonded carbon nanotube@graphene (CNT@G) hybrid nanomaterial was strategically synthesized and demonstrated to behave as an efficient interlayer for realizing efficient and stable PSCs. Due to the advantage of the seamless bond, the as-proposed hybrid nanostructure showed an apparent improvement compared to the use of CNTs only, graphene only, or a simple mixture of CNTs and graphene. The power conversion efficiency improved from 15.67% to 19.56% after introduction of the hybrid nanomaterial due to efficient carrier extraction, faster charge transport, and restrained carrier recombination. More importantly, PSCs with a CNT@G hybrid-decorated hole transport layer (HTL) showed good thermal stability during a 50 h heat-aging test at 100 degrees C and water stability under ambient humidity (30-50% relative humidity) for 500 h because the hybrid nanostructure exhibited an increased capability to block ion/molecule diffusion. Our results provide an alternative approach for fully exploring the potential application of nanocarbons in the development of high-performance PSCs.