▎ 摘 要
Mesoporous magnesium oxide-graphene oxide composite (MGC) has been synthesized using a facile post-immobilization method by mixing pre-synthesized magnesium oxide (MgO) with graphene oxide (GO). MgO used for fabrication of the composite has been synthesized using an environment-friendly method involving gelatin as a template. XRD, Raman and EDX analyses have confirmed the presence of MgO and GO in the composite. FTIR and SEM analyses of synthesized MGC have further elucidated the surface functionalities and morphology, respectively. Using N-2 adsorption-desorption isotherm, BET surface area of MGC has been calculated to be 55.9 m(2) g(-1) and BJH analysis confirmed the mesoporous nature of MGC. The application of synthesized MGC as a selective adsorbent for various toxic anionic dyes has been explored. Batch adsorption studies have been carried out to investigate the influence of different adsorption parameters on the adsorption of two anionic dyes: indigo carmine (IC) and orange G (OG). The maximum adsorption capacities exhibited by MGC for IC and OG are 252.4 and 24.5 mg g(-1), respectively. Plausible mechanism of dye adsorption has been explained in detail using FTIR analysis. In a mixture of cationic and anionic dyes, MGC selectively adsorbs anionic dyes with high separation factors, while in binary mixtures of anionic dyes, both dyes are adsorbed efficiently. Thus, MGC has been shown to be a potential adsorbent for the selective removal of anionic dyes from wastewater.