▎ 摘 要
Objective To evaluate the artifact expression of a new material-polylactic acid (PLA)/hydroxyapatite (HA)/graphene oxide (GO) nanocomposite-and compare it with that of commonly used dental materials, using cone-beam computed tomography. Materials and methods Cylinders of amalgam alloy, metal alloy, titanium, gutta-percha, and PLA/HA/GO were individually placed in the center of an acrylic phantom. Three images of each phantom + cylinder set were acquired using a Picasso Trio unit (Vatech, Hwaseong, South Korea) set at 90 kVp, 3.7 mA, 0.2 mm(3) voxel size, and 12 x 8.5 cm FOV. Three images of a control group (sound phantom) were also obtained. Eight ROIs were established in each image to evaluate the standard deviation (S.D.) of gray values in the ImageJ Software. The Kruskal-Wallis test with the Student-Newman-Keuls post hoc was employed, considering a significance level of 5%. Results There were no significant differences in S.D. between the control and PLA/HA/GO images (p = 0.712). Both control and PLA/HA/GO showed fewer image artifacts than the other materials (p < 0.05). The images of the amalgam alloy did not differ from the metal alloy images (p = 0.691), showing more artifacts than the gutta-percha (p = 0.028) and titanium (p = 0.051). Conclusions The PLA/HA/GO produced fewer artifacts and a better-quality image than the other tested materials.