• 文献标题:   Graphene Coated Liquid Metal Droplet-Enabled Dual-Axis Integrated Accelerometer
  • 文献类型:   Article
  • 作  者:   BABATAIN W, ELATAB N, HUSSAIN MM
  • 作者关键词:   inertial sensor, laserinduced graphene, liquid metal, motion sensor, resistive sensor
  • 出版物名称:   ADVANCED MATERIALS TECHNOLOGIES
  • ISSN:   2365-709X
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1002/admt.202201094 EA OCT 2022
  • 出版年:   2023

▎ 摘  要

This paper presents the design, optimization, fabrication, and characterization of a novel accelerometer consisting of a graphene-coated liquid metal proof mass integrated with laser-induced graphene (LIG) resistive sensing elements. The sensor utilizes the unique electromechanical properties of eutectic gallium-indium (EGaIn) liquid metal by confining an EGaIn droplet within a graphene-patterned 3D pyramid cavity. The pyramid base structure imposes a restoring force on the droplet enabling continuous and simultaneous sensing in two directions using a single proof mass. Coating EGaIn droplet with graphene forms an interpenetrated protective shell around the droplet, enhancing its mobility and mechanical robustness. Design optimization of the sensing microelectrodes is performed to improve the sensor performance. The accelerometer performance is evaluated and characterized, demonstrating a sensitivity of approximate to 9.5 k omega g(-1) (978 omega m(-1) s(2)) and a cross-axis sensitivity of approximate to 3 % with excellent repeatability (over 120 000 cycles). The sensor is fabricated using a scalable laser writing technique and integrated with a programmable system on a chip (PSoC) to function as a stand-alone system for real-time wireless motion monitoring and virtual game control. The developed Graphene/Liquid metal droplet-based sensor is promising for applications of inertial sensors, inertial switches, and soft liquid metal robots with attractive electromechanical properties.