▎ 摘 要
In this paper we analyse the electronic properties of Dirac electrons in finite-size ribbons and in circular and hexagonal quantum dots. We show that due to the formation of sub-bands in the ribbons it is possible to spatially localize some of the electronic modes using a p-n-p junction. We also show that scattering of confined Dirac electrons in a narrow channel by an infinitely massive wall induces mode mixing, giving a qualitative reason for the fact that an analytical solution to the spectrum of Dirac electrons confined in a square box has not yet been found. A first attempt to solve this problem is presented. We find that only the trivial case k = 0 has a solution that does not require the existence of evanescent modes. We also study the spectrum of quantum dots of graphene in a perpendicular magnetic field. This problem is studied in the Dirac approximation, and its solution requires a numerical method whose details are given. The formation of Landau levels in the dot is discussed. The inclusion of the Coulomb interaction among the electrons is considered at the self-consistent Hartree level, taking into account the interaction with an image charge density necessary to keep the back-gate electrode at zero potential. The effect of a radial confining potential is discussed. The density of states of circular and hexagonal quantum dots, described by the full tight-binding model, is studied using the Lanczos algorithm. This is necessary to access the detailed shape of the density of states close to the Dirac point when one studies large systems. Our study reveals that zero-energy edge states are also present in graphene quantum dots. Our results are relevant for experimental research in graphene nanostructures. The style of writing is pedagogical, in the hope that newcomers to the subject will find this paper a good starting point for their research.