▎ 摘 要
The results of recent experiments and computer simulations and theoretical modeling of the mechanical properties of metal matrix composites with graphene and carbon nanotubes are reviewed. The mechanisms involved in strengthening of such composites and the results of simulation of their plastic deformation and strength properties are considered. The effects of the size of inclusions and interface characteristics on the strength and plasticity of such composites are analyzed. Various processes of plastic deformation and fracture of metal matrix composites with graphene and carbon nanotubes and the effects of these processes on the mechanical properties of composites of these kinds are discussed. The influence of the nonuniform grain size distribution of the metal matrix on the strength and plasticity of metal matrix composites with graphene and carbon nanotubes is considered.