▎ 摘 要
Flexible sensing devices have drawn tremendous attention in the past decades due to their potential applications in future hand-held, potable consumer, and wearable electronics. Here, we firstly developed an ultrasensitive wireless potentiometric aptasensor based on flexible freestanding graphene paper for kanamycin detection. Flexible graphene paper made from a simple vacuum filtration method was used as a biocompatible platform for effective immobilization of aptamer. A nuclease-assisted amplification strategy was introduced into this potentiometric biosensing system in order to significantly improve the detection sensitivity through a classic catalytic recycling reaction of target induced by the nuclease (DNase I). As expected, an ultra-low detection limit of 30.0 fg/mL for kanamycin was achieved. Furthermore, the developed potentiometric enzymatic aptasensor exhibits high selectivity, favorable flexibility, excellent stability and reproducibility, which holds great promising for its routine sensing application.