▎ 摘 要
The electrochemical cycling stability is one of the most important parameters for the practical application of supercapacitors and highly depends on the electrode material. Herein, we report the cycling stability of reduced graphene oxide with different morphologies such as curly and flat graphene nanosheets prepared by the chemical and thermal reduction of graphene oxide, respectively. The "curly" graphene nanosheets displayed moderate capacitance, good cycling stability, and satisfactory rate performance up to 2,500 cycles. In contrast, the "flat" graphene nanosheets displayed a very high initial capacitance, but poor cycling stability and rate performance. The pore structure of the "curly" graphene nanosheets was found to be more stable than that of the "flat" graphene nanosheets.