• 文献标题:   Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample
  • 文献类型:   Article
  • 作  者:   JEROME R, SUNDRAMOORTHY AK
  • 作者关键词:   hexagonal boron nitride, graphene dispersion, nicotine detection, modified electrode
  • 出版物名称:   ANALYTICA CHIMICA ACTA
  • ISSN:   0003-2670 EI 1873-4324
  • 通讯作者地址:   SRM Inst Sci Technol
  • 被引频次:   2
  • DOI:   10.1016/j.aca.2020.07.060
  • 出版年:   2020

▎ 摘  要

The selective detection of nicotine is necessary in biological and biomedical samples to screen the patients who has the neurodegenerative diseases due to tobacco addiction. For this purpose, we have synthesized a hybrid binary composite made of 2D hexagonal boron nitride nanosheets (BN) doped graphene film via a scalable top-down technique for the electrochemical detection of nicotine. Transmission electron microscopy (TEM) images showed that layered graphene sheets bounded with BN nanosheets. Moreover, Fourier-transform infrared (FT-IR), UV-visible (UV-vis), and X-ray photoelectron spectroscopies (XPS) confirmed successful integration of BN within graphene. In addition, the electrical conductivity of the nanocomposite was tested using electrochemical impedance spectroscopy (EIS), which showed high electrical conductivity of BN/graphene coated electrode with low charge transfer resistance. To develop a selective nicotine sensor, glassy carbon electrode (GCE) surface was coated with BN/graphene hybrid film and tested its electro-catalytic activity against nicotine. It was found that BN/graphene/GCE based sensor exhibited excellent electro-catalytic activity for nicotine oxidation at lower potential of +0.97 V in phosphate buffer solution (PBS, pH 7.0) and the linear response was observed from 1 to 1000 mu M. The limit of detection (LOD) was estimated as 0.42 mu M. The common interferent compounds such as uric acid (UA), paracetamol (PA), glucose (Glu), melamine (Mel), cysteine (Cys) and dopamine (DA) did not interfere on the sensor selectivity. Furthermore, BN/graphene/GCE exhibited high stability and reproducibility. Finally, BN/graphene/GCE-based sensor was successfully applied to detect nicotine in a tobacco sample with high recovery. (C) 2020 Elsevier B.V. All rights reserved.