▎ 摘 要
Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten oxide films in photocatalytic reduction of GO platelets as compared to the evaporated tungsten oxide films was assigned to lower W5+/W6+ ratio (i.e.,a better stoichiometry) and higher surface water content of the sol-gel film. The GO reduction level achieved after 24 h UV-assisted photocatalytic reduction on surface of the sol-gel tungsten oxide film was comparable with the reduction level usually obtainable by hydrazine. The sol-gel tungsten oxide film even showed an efficient photocatalytic reduction of the GO platelets after exposure to the visible light of the environment for 2 days. (C) 2013 Elsevier B.V. All rights reserved.