▎ 摘 要
The results of DFT and ab initio calculations of the hydrogen physisorption on graphene, hexagonal boron nitride (h-BN), and a graphene-like boron nitride-carbon heterostructure (GBNCH) are discussed. PBE-D3, B3LYP-D3 as well as MP2 methods were employed in calculating the adsorption energies (Ea) of a hydrogen molecule to the appropriate structure and the optimal distances between them. Six adsorption sites were examined, and it is demonstrated that the 'hollow' sites are favorable for hydrogen adsorption. It was established that GBNCH exhibits increased Ea values in comparison with graphene and h-BN. Hydrogen adsorption isotherms at different temperatures were obtained using grand canonical Monte-Carlo simulations, and it was shown that GBNCH reveals advanced adsorption properties in comparison with its counterparts. The usage of GBNCHs for hydrogen storage is also discussed. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.