• 文献标题:   The shear mode of multilayer graphene
  • 文献类型:   Article
  • 作  者:   TAN PH, HAN WP, ZHAO WJ, WU ZH, CHANG K, WANG H, WANG YF, BONINI N, MARZARI N, PUGNO N, SAVINI G, LOMBARDO A, FERRARI AC
  • 作者关键词:  
  • 出版物名称:   NATURE MATERIALS
  • ISSN:   1476-1122 EI 1476-4660
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   343
  • DOI:   10.1038/NMAT3245
  • 出版年:   2012

▎ 摘  要

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from similar to 43 cm(-1) in bulk graphite to similar to 31 cm(-1) in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.