▎ 摘 要
Graphene grown on a metal surface, Cu(111), with a boron-nitride (h-BN) buffer layer is studied. Our first-principles calculations reveal that charge is transferred from the copper substrate to graphene through the h-BN buffer layer which results in n-doped graphene in the absence of a gate voltage. More importantly, a gap of 0.2 eV, which is comparable to that of a typical narrow gap semiconductor, opens just 0.5 eV below the Fermi level at the Dirac point. The Fermi level can be easily shifted inside this gap to make graphene a semiconductor, which is crucial for graphene-based electronic devices. A graphene-based p-n junction can be realized with graphene eptaxially grown on a metal surface.