• 文献标题:   Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning
  • 文献类型:   Article
  • 作  者:   MAXIM Z, JESSE S, SUMPTER BG, KALININ SV, DYCK O
  • 作者关键词:   graphene, deep learning, microscopy
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   9
  • DOI:   10.1088/1361-6528/abb8a6
  • 出版年:   2021

▎ 摘  要

Using electron beam manipulation, we enable deterministic motion of individual Si atoms in graphene along predefined trajectories. Structural evolution during the dopant motion was explored, providing information on changes of the Si atom neighborhood during atomic motion and providing statistical information of possible defect configurations. The combination of a Gaussian mixture model and principal component analysis applied to the deep learning-processed experimental data allowed disentangling of the atomic distortions for two different graphene sublattices. This approach demonstrates the potential of e-beam manipulation to create defect libraries of multiple realizations of the same defect and explore the potential of symmetry breaking physics. The rapid image analytics enabled via a deep learning network further empowers instrumentation for e-beam controlled atom-by-atom fabrication. The analysis described in the paper can be reproduced via an interactive Jupyter notebook at