• 文献标题:   Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays
  • 文献类型:   Article
  • 作  者:   THUNEMANN M, LU YC, LIU X, KILIC K, DESJARDINS M, VANDENBERGHE M, SADEGH S, SAISAN PA, CHENG Q, WELDY KL, LYU HM, DJUROVIC S, ANDREASSEN OA, DALE AM, DEVOR A, KUZUM D
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:   2041-1723
  • 通讯作者地址:   UCSD
  • 被引频次:   19
  • DOI:   10.1038/s41467-018-04457-5
  • 出版年:   2018

▎ 摘  要

Recent advances in optical technologies such as multi-photon microscopy and optogenetics have revolutionized our ability to record and manipulate neuronal activity. Combining optical techniques with electrical recordings is of critical importance to connect the large body of neuroscience knowledge obtained from animal models to human studies mainly relying on electrophysiological recordings of brain-scale activity. However, integration of optical modalities with electrical recordings is challenging due to generation of light-induced artifacts. Here we report a transparentgraphene microelectrode technology that eliminates light induced artifacts to enable crosstalk-free integration of 2-photon microscopy, optogenetic stimulation, and cortical recordings in the same in vivo experiment. We achieve fabrication of crack- and residue-free graphene electrode surfaces yielding high optical transmittance for 2-photon imaging down to -1 mm below the cortical surface. Transparent graphene micro electrode technology offers a practical pathway to investigate neuronal activity over multiple spatial scales extending from single neurons to large neuronal populations.