▎ 摘 要
The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as -OH, -COOH and -C=O on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp(2) domains of RGN increases as treated by tartaric acid < malic acid < oxalic acid whereas the steric hindrance (SH) decreases and the ionization constant (IC) differs among these three acids. Furthermore, the specific capacitances (C-s) of GO have been greatly promoted from 2.4 F g(-1) to 100.8, 112.4, and 147 F g(-1) after treated with tartaric, malic and oxalic acids, respectively. This finding agrees well with the spectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved C-s of the RGN. (C) 2013 Elsevier B.V. All rights reserved.