▎ 摘 要
Unlike an independent variable in classical continuum mechanics, temperature at molecular dynamics simulation is perceived as a spatiotemporal averaged quantity from the velocity field of atoms in system of interest. Following this definition, an intriguing correlation between displacement and temperature in graphene nanoribbon under impulsive loading has been captured at the early stage of simulation to demonstrate that temperature variation along a specific direction behaves like a wave motion, while at the end of simulation temperature field reaches to a steady state like a classical diffusion equation of temperature. This riveting phenomenon offers insights into the thermal-mechanical coupling phenomena of nanodevices. (C) 2013 Elsevier B.V. All rights reserved.