▎ 摘 要
Bamboo materials with improved antibacterial performance based on ZnO and graphene oxide (GO) were fabricated by vacuum impregnation and hydrothermal strategies. The Zn2+ ions and GO nanosheets were firstly infiltrated into the bamboo structure, followed by dehydration and crystallization upon hydrothermal treatment, leading to the formation of ZnO/GO nanocomposites anchored in the bulk bamboo. The bamboo composites were characterized by several techniques including scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and X-ray diffraction (XRD), which confirmed the existence of GO and ZnO in the composites. Antibacterial performances of bamboo samples were evaluated by the bacteriostatic circle method. The introduction of ZnO/GO nanocomposites into bamboo yielded ZnO/GO/bamboo materials which exhibited significant antibacterial activity against Escherichia coli (E. coli, Gram-negative) and Bacillus subtilis (B. subtilis, Gram-positive) bacteria and high thermal stability. The antimicrobial bamboo would be expected to be a promising material for the application in the furniture, decoration, and construction industry.